Benha University

Faculty of Engineering (at Shoubra)

Sheet 1 - Sol

You need to keep an eye on the formal definition of algorithm:
"An algorithm is an ordered set of unambiguous, executable steps that defines a terminating process."
I

- 5.4

Let the students come up with their own examples from whatever domain they prefer.

- 5.5

No, it does not represent an algorithm in the strict sense.
Because the process described will never terminate as the value of Count will never be 5 .

- 5.6

The three steps do not constitute an algorithm because Step 3 is not executable as the two line segments drawn in the two previous steps do not intersect.

- 5.7

```
Count \leftarrow 2;
repeat {
    print Count;
    Count \leftarrow Count + 1;
} until (Count \geq 7)
```

- 5.13

Pseudocode is a relaxed version of a programming language used to jot down ideas. A formal programming language prescribes strict rules of grammar that must be obeyed.

- 5.27

Identify the termination condition in each of the following iterative statements:
a) Count ≥ 5
b) Count $=1$
c) (Count ≥ 5) or (Total ≥ 56)

- 5.28

The body of the loop is \{print Count; Count \leftarrow Count +3 ; \} and it will be executed twice. If the test is changed to (Count $\neq 6$), the body will be executed infinitely.

Benha University

II
Given

Computer Systems Engineering Electrical Engineering Department

Faculty of Engineering (at Shoubra)

```
Count & 0;
while (Count < 10) do {
    print Count;
    Count & Count + 1;
}
```

a)

```
Count & 0;
while (Count < 10) do {
    print 9 - Count;
    Count \leftarrow Count + 1;
}
```

b) \quad Count $\leftarrow 0$;

```
Count \leftarrow 0
while (Count < 10) do {
    print Count;
    Count & Count + 2;
}
```

c)

```
Count \leftarrow 1;
while (Count < 10) do {
    print Count;
    Count \leftarrow Count + 2;
}
```

d)

```
Count \leftarrow 0;
while (Count < 10) do {
    print "*";
    Count & Count + 1;
```

\}
e)

```
Sum \leftarrow 0;
Count \leftarrow 0;
while (Count < 10) do {
    Sum \leftarrow Sum + Count;
    Count & Count + 1;
}
print Sum;
```


